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The Engineering Multidisciplinary Optimization (MDO) Problem...

...can be stated as
minimize f(x; u(x))

subject to h(x; u(x)) = 0

g(x; u(x)) � 0;

where, given design variablesx, the state variablesu(x) are defined via

A(x; u(x)) =
0

BBB@
A1(x; u1(x); : : : ; uN(x))

...

AN(x; u1(x); : : : ; uN(x))
1

CCCA = 0;

The blocks of the system usually represent the state equations for the
disciplinary analyses and the necessary interdisciplinary couplings.
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Motivation
� Address computational expense of repeated use of high-fidelity models

– Solutions of coupled PDE typically required at each iteration

– For uncoupled problem formulations, the number of function
evaluations typically rises

– The difficulty is not likely to disappear with improvements in
computational technology

– Use of lower-fidelity models alone does not guarantee improvement in
higher-fidelity design

– Variable-fidelity models in use for a long time

� Allow for easier integration of disciplines in MDO

� Allow for interactive design

� Demonstrate feasibility of proposed methods on engineering problems
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Example: Variable-Fidelity Computational Models in CFD
� Variable-fidelity physical models (Jameson, 1997)

� A single physical model evaluated on meshes of varying refinement

� Polynomial approximations such as RSM, kriging
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Some Related Work
� Overview of approximation concepts in structural design, Barthelemy

and Haftka 1993

� Research conducted or supported at NASA Langley:

– Design-oriented analysis, Gumbert et al., Silva et al. (NASA LaRC), Haftka
at al. (University of Florida/VPI)

– A posteriorierror bounds for outputs of PDE and sensitivity derivatives of
outputs, Lewis (ICASE), Patera et al. (MIT)

– Managing models/approximations in optimization, Alexandrov et al. (NASA
LaRC)

� Managing approximations in optimization, Booker et al.
(Boeing/IBM/Rice/W&M)
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A First-Order AMF for Constrained Optimization
� Potentially as many AMF’s as there are optimization algorithms

� The underlying algorithm - MAESTRO (Alexandrov ’93, Alexandrov
and Dennis ’98)

� Control “the amount” of optimization by varying the size of the trust
region

� Not necessary to change physical models to obtain convergence

� When other models available, guidance on alternating

� Easily applicable to MDO problems
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AMF: model of constraints and substep
� Consider minimizeff(x) : h(x) = 0g, wheref andh are expensive

� Let xc be the current iterate and�c be the trust-region radius; set

z0 = xc

� At xc, select a model of the constraintsahc that satisfies:

ahc (xc) = h(xc)

rahc (xc) = rh(xc)

� Find a substeps1 that approximately solves:

minimize ahc (z0 + s)

subject to k s k � ��c; � 2 (0:5; 0:6)

� Setz1 = z0 + s1
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AMF: model of objective and substep
� Select a modelafc of the objective function that satisfies:

afc (xc + s1) = f(xc + s1)

rafc (xc + s1) = rf(xc + s1)

� Find s2 that approximately solves:

minimize afc (z1 + s)

subject to k s k �
p

�2
c � ks1k2

� Setsc = s1 + s2

� An extension of MAESTRO—the Gauss-Newton model of the constraints and the

quadratic model of the objective replaced by general models that satisfy

first-order consistency conditions
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AMF: evaluating the step / updating
� Merit function: P(x; �) � f(x) + � k h(x) k2 or

L(x; �; �) � f(x) + �Th(x) + � k h(x) k2

� Penalty parameter� (not used in computing the step) is updated in
rigorously (El-Alem, 1987)

� Define

aredc � P(xc; �c)�P(xc + sc; �c)

and

predc � [f(xc)�afc (xc+sc)]+�c[k h(xc) k
2�


 ahc (xc + sc)


2]

� Update the iterate and�c based onr = aredc

predc
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AMF: conditions on the trial step
� To inherit convergence properties from MAESTRO,s1 and s2 must

satisfy:

– A sufficient decrease condition:sc is to satisfy a fraction of Cauchy
decrease in modelk

– A boundedness condition:s1 to satisfy

k s1 k � Kk h(xc) k

for some constantK independent of the iterates

� Both are easily satisfied; another trust-region procedure suffices
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One choice of trial step—constraints (objective analogous)

Given z0 = xc;�c > 0, sety0 = z0, �0 < �c, v0 = 0

For j = 0; 1; : : :, while remaining within �c do f

Construct qhj (yj + p) �


 ahc (yj) +rahc (yj)

Tp


2

Find an approximate solutionpj to

minimize qhj (yj + p)

subject to k p k � �j

k yj + p k � �c

that satisfies FCD for



 ahc


2 from yj

Computer =



 ahc (yj)


2 � 

 ahc (yj + pj)


2



 ahc (yj)


2 � qhj (yj + pj)

Evaluatepj and updateyj and �j

Setvj+1 = vj + (yj+1 � yj)

g

Sets1 = vj
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Convergence properties
� Theoretical:

– MAESTRO assumptions: smoothness and boundedness, full rank for
the gradients of constraints and their models, sufficient decrease and
boundedness for the substeps

– AMF assumptions: consistency conditions and uniform boundedness
of the Hessian approximations

– Result: first-order convergence to a critical point of the high-fidelity
problem

� Practical:

– Enforce compatibility conditions

– Actual performance will depend on the predictive properties of the
model; very problem-dependent
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Preliminary Numerical Results
� Initial testing on Hock and Schittkowski problems and MDOB Test Suite

problems; notion of variable-fidelity models not well defined

� Now demonstrating feasibility on single-discipline, aerodynamic
optimization problems

� Variable-fidelity models represented by a single model evaluated of
meshes of varying refinement

� Computational experiment:

– Single-fidelity problems solved with a well-known optimizers

– Single-fidelity problems solved with a research implementation of
MAESTRO, without AMF

– Variable-fidelity problem solved with MAESTRO-based AMF
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Preliminary Numerical Results: computational details
� Consistency conditions:

– Enforced only at “major” iterates

– Can be relaxed

– Are easily enforced (Chang et al. ’93):

� Given fhi(x) and flo(x), define�(x) � fhi(x)

flo(x)

� Given xc, build �c(x) = �(xc) +r�(xc)
T (x� xc)

� Then ac(x) = �c(x)flo(x) satisfies the consistency conditions

� Inequality constraints handled by squared slacks

n.alexandrov@larc.nasa.gov Multidisciplinary Optimization Branch, NASA Langley Research Center



The Fourth International Congress on Industrial and Applied Mathematics, 5–9 July 1999, Edinburgh, UK 16

Preliminary Numerical Results: 2D Airfoil Optimization
Problem formulated and assembled by L.L. Green

� Objective: � L
D

maximum
camber

maximum
thickness

� Constraints: pitching moment

� Design variables: maximum camber, maximum thickness

� Analysis: Euler (NS/Euler code FLOMG, Swanson, Turkel)

� Conditions: subsonic, inviscid flow

� Levels of fidelity: analyses on 129x33, 257x65 meshes
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2D Airfoil: Problem Description

-0.15

-0.15

Frame 002  13 May 1999  AIRFOIL OPTIMIZATION ON 129x33 MESH

-14

-13

-1
2

-12

-1
1

-11

-1
0

-10

-9

-9

-9

-8

-8

-8
-7

-7

-7

-6

-6

-6

-5

-5

-5

-4

-4

-3
-3

-3

-2
-2

-1
-1

-1

maximum camber

m
ax

im
u

m
th

ic
kn

es
s

0 0.005 0.01 0.015 0.02
0.1

0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14 129 x 33 level sets

Frame 001  13 May 1999  AIRFOIL OPTIMIZATION ON 129x33 MESHFrame 001  13 May 1999  AIRFOIL OPTIMIZATION ON 129x33 MESH

-0.15

-0.15

-0.15

Frame 002  13 May 1999  AIRFOIL OPTIMIZATION ON 257x65 MESH

-28 -25-23 -23

-21

-1
8

-18-16 -16

-1
4

-14

-1
1

-11

-9

-9

-9

-9

-7

-7

-7

-5

-5

-2
-2

-2

maximum camber

m
ax

im
u

m
th

ic
kn

es
s

0 0.005 0.01 0.015 0.02
0.1

0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14
257x65 level sets

Frame 001  13 May 1999  AIRFOIL OPTIMIZATION ON 257x65 MESHFrame 001  13 May 1999  AIRFOIL OPTIMIZATION ON 257x65 MESH

� Time/analysis on 257x65 mesh = 4 Time/analysis on 129x33 mesh

� Approximately 8 min vs 2 min per analysis cold start (free stream conditions)

� Restart files are used - neighboring solutions obtained more efficiently

n.alexandrov@larc.nasa.gov Multidisciplinary Optimization Branch, NASA Langley Research Center



The Fourth International Congress on Industrial and Applied Mathematics, 5–9 July 1999, Edinburgh, UK 18

2D Airfoil: MAESTRO and AMF Results
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� Number of iterations:

– MAESTRO: 257 mesh alone - 34

– AMF: on 129 mesh - 20; on 257 mesh - 9; equivalent 257 mesh - 14
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Preliminary Numerical Results: 3D Wing Optimization
Problem formulated and assembled by C.R. Gumbert

� Objective: � L
D

� Constraints: CLS (total lift); Cl (rolling moment); CM (pitching moment)

� Design variables: tip chord, trailing edge setback

� Analysis: Euler (NS/Euler code CFL3D, NASA LaRC)

� Conditions: subsonic, inviscid flow

� Levels of fidelity: analyses on 97x25x17, 193x49x33 meshes
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3D Wing: Problem Description
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� Time/analysis on 193x49x33 mesh = 8 Time/analysis on 97x25x17 mesh

� Approximately 64 min vs 8 min per analysis, cold start (free stream conditions)

� Restart files are used
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3D Wing: MAESTRO and AMF Results
Frame 002  13 May 1999  AMF path
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� Constraints were inactive for this regime

� Number of iterations:

– MAESTRO: 97 mesh alone - 17; 193 mesh alone - in progress, expect similar

– AMF: 97 mesh - 17; 193 mesh - 7; equivalent 193 mesh - 9
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Conclusions to-Date
� Initial numerical results with MAESTRO-based AMF are promising

� For models represented by variable mesh sizes, must use consistent
families of meshes

� Demonstration with engineering analysis codes is difficult

– Standard practice: re-grid at new points; do not take long steps

– We are attempting to use mesh deformation and may take long steps

– Robustness wrt mesh deformation in question

– Results sensitive to analysis convergence

– Analysis and derivatives very sensitive to feasible region (bounds)

� Test problem characteristics typical for some classes of problems only

� For other problems other models have to be considered
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Currently Under Investigation
� Strategies for maximizing the use of lower-fidelity models (e.g., using

information from a posterioribounds for PDE outputs)

� Other CFD problem regimes (e.g., transonic)

� A variety of approximations and AMF’s

� Other model arrangements (variable-fidelity physical, reduced-order
models)

� Using automatic differentiation for generating derivatives

� Demonstrations for multidisciplinary problems
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